Définition 32 (cofacteur).

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$. Le cofacteur c_{ij} est le nombre défini par

$$c_{ij} = (-1)^{i+j} |A_{ij}|,$$

où A_{ij} est la matrice des cofacteurs.

Conséquence:

Théorème 24. Le déterminant d'une matrice $A \in M_{n \times n}(\mathbb{R})$ peut être calculé par un développement

1. selon n'importe quelle ligne de A:

$$\det(\mathbf{A}) = a_{i1}c_{i1} + \dots + a_{in}c_{in}$$

 $2. \ selon \ n'importe \ quelle \ colonne \ de \ A:$

$$\det(\mathbf{A}) = a_{1j}c_{1j} + \dots + a_{nj}c_{nj}$$

Cas particuliers

1) Matrices diagonales

2) Matrices triangulaires
Remarque
Exemple

3.2 Propriétés des déterminants

Le but de cette section est d'obtenir des propriétés permettant de simplifier le calcul du déterminant d'une matrice en passant par la forme échelonnée.

Rappel: Echelonner une matrice A revient à multiplier A à gauche par des matrices élémentaires. Etudions dans un premier temps le déterminant des matrices élémentaires.

Proposition

1) Soit $E_{ij} \in M_{n \times n}(\mathbb{R})$ la matrice élémentaire obtenue en échangeant les lignes i et j de I_n pour $1 \le i \ne j \le n$. Alors

$$\det(E_{ij}) = -1$$

2) Soit $E_i(\alpha) \in M_{n \times n}(\mathbb{R})$ la matrice élémentaire obtenue à partir de I_n en multipliant la i^e ligne par α pour un $\alpha \in \mathbb{R}^*$ et $1 \le i \le n$. Alors

$$\det(E_i(\alpha)) = \alpha$$

3) Soit $E_{ij}(\alpha) \in M_{n \times n}(\mathbb{R})$ la matrice élémentaire obtenue à partir de I_n en ajoutant la j^e ligne multipliée par α à la i^e ligne pour $\alpha \in \mathbb{R}$ et $1 \le i \ne j \le n$. Alors

$$\det(E_{ij}(\alpha)) = 1$$

Etudions l'effet des opérations élémentaires sur le déterminant d'une matrice dans le cas d'un exemple :

Exemple : Considérons la matrice A donnée par

Théorème 25. Soient $A \in M_{n \times n}(\mathbb{R})$ et E une matrice élémentaire obtenue à partir de I_n . Alors

Stratégies pour le calcul du déterminant

- 1) On développe par rapport à une ligne ou colonne avec beaucoup de zéros.
- 2) On échelonne la matrice en tenant compte du fait que
- les opérations élémentaires de type I changent le signe du déterminant,
- multiplier une ligne de la matrice par un scalaire non nul α multiplie le déterminant par le même scalaire,
- les opérations élémentaires de type III ne changent pas le déterminant.

Exemple

Théorème 26. Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices. Alors det(AB) = det(A)det(B)

 ${\bf Remarque}$

Preuve

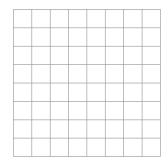
Théorème 27. Soit $A \in M_{n \times n}(\mathbb{R})$. Alors

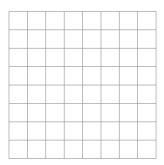
1.

2.

Remarque

3.3 Interprétation géométrique du déterminant





Théorème 28.

1.
$$Si \ A \in M_{2\times 2}(\mathbb{R}) \ alors$$

2.
$$Si \ A \in M_{3\times 3}(\mathbb{R}) \ alors$$

Remarque